首页> 外文OA文献 >Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases.
【2h】

Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases.

机译:简单LOD得分和NPL得分之间的直接功效比较,用于复杂疾病的连锁分析。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Several methods have been proposed for linkage analysis of complex traits with unknown mode of inheritance. These methods include the LOD score maximized over disease models (MMLS) and the "nonparametric" linkage (NPL) statistic. In previous work, we evaluated the increase of type I error when maximizing over two or more genetic models, and we compared the power of MMLS to detect linkage, in a number of complex modes of inheritance, with analysis assuming the true model. In the present study, we compare MMLS and NPL directly. We simulated 100 data sets with 20 families each, using 26 generating models: (1) 4 intermediate models (penetrance of heterozygote between that of the two homozygotes); (2) 6 two-locus additive models; and (3) 16 two-locus heterogeneity models (admixture alpha = 1.0,.7,.5, and.3; alpha = 1.0 replicates simple Mendelian models). For LOD scores, we assumed dominant and recessive inheritance with 50% penetrance. We took the higher of the two maximum LOD scores and subtracted 0.3 to correct for multiple tests (MMLS-C). We compared expected maximum LOD scores and power, using MMLS-C and NPL as well as the true model. Since NPL uses only the affected family members, we also performed an affecteds-only analysis using MMLS-C. The MMLS-C was both uniformly more powerful than NPL for most cases we examined, except when linkage information was low, and close to the results for the true model under locus heterogeneity. We still found better power for the MMLS-C compared with NPL in affecteds-only analysis. The results show that use of two simple modes of inheritance at a fixed penetrance can have more power than NPL when the trait mode of inheritance is complex and when there is heterogeneity in the data set.
机译:已经提出了几种方法来对遗传模式未知的复杂性状进行连锁分析。这些方法包括在疾病模型(MMLS)上最大化的LOD得分和“非参数”链接(NPL)统计信息。在先前的工作中,我们评估了当最大化两个或多个遗传模型时I型错误的增加,并且我们比较了MMLS在许多复杂的遗传模式下检测连锁的能力,并假设了真实模型。在本研究中,我们直接比较MMLS和NPL。我们使用26个生成模型模拟了100个数据集,每个数据集包含20个科:(1)4个中间模型(两个纯合子之间的杂合子渗透率); (2)6个两相加模型; (3)16个两基因座异质性模型(混合物alpha = 1.0,.7,.5和.3; alpha = 1.0复制了简单的孟德尔模型)。对于LOD分数,我们假设显性和隐性继承的外显率为50%。我们采用两个最大LOD分数中的较高者,然后减去0.3以校正多个测试(MMLS-C)。我们使用MMLS-C和NPL以及真实模型比较了预期的最大LOD分数和功率。由于NPL仅使用受影响的家庭成员,因此我们还使用MMLS-C执行了仅受影响的分析。在大多数我们检查的情况下,MMLS-C都比NPL强大得多,除非连锁信息很低,并且在位点异质性下接近真实模型的结果。在仅受影响的分析中,我们仍然发现与NPL相比,MMLS-C具有更好的功能。结果表明,当继承的特质模式复杂且数据集存在异质性时,以固定的外显率使用两种简单的继承模式比NPL具有更大的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号